
Installation and Basic Usage
Source:vignettes/installation-and-usage.Rmd
installation-and-usage.RmdThis vignette provides a guide to kuzuR and performing
basic operations, including creating a database, defining a schema,
loading data from various sources, and executing Cypher queries.
1. Connecting to a Database
First, load the kuzuR package and create a connection to
a Kuzu database. You can create an in-memory database or specify a path
to a database file on disk.
library(kuzuR)
con <- kuzu_connection(":memory:")2. Data Types and Schema Definition
Kuzu supports a rich set of data types. When creating a schema, you
need to map your R data types to the corresponding Kuzu
LogicalTypeID.
Kuzu to R Data Type Mapping
Kuzu LogicalTypeID |
R Type Equivalent | Description |
|---|---|---|
BOOL |
logical |
TRUE/FALSE values |
INT64 |
integer |
64-bit signed integer |
DOUBLE |
numeric |
Double-precision floating-point number |
STRING |
character |
UTF-8 encoded string |
TIMESTAMP |
POSIXct |
Date and time with timezone, stored as microseconds since epoch |
DATE |
Date |
Date (year, month, day) |
INTERVAL |
difftime |
Time interval (e.g., “1 year 2 months 3 days”) |
UUID |
character |
Universally Unique Identifier, stored as a string |
LIST |
list |
Ordered collection of values of the same type |
MAP |
list (named list) |
Unordered collection of key-value pairs |
Creating a Complex Schema
You can define a schema with node and relationship tables using
kuzu_execute(). Here’s an example of a more complex
schema:
# Create a node table for users with various data types
kuzu_execute(con, paste("CREATE NODE TABLE User(userID UUID, name STRING,",
"age INT64, is_active BOOL, created_at TIMESTAMP,",
"last_login DATE, notes STRING[],",
"PRIMARY KEY (userID))"))
# Create a node table for products
kuzu_execute(con, "CREATE NODE TABLE Product(productID INT64, name STRING, PRIMARY KEY (productID))")
# Create a relationship table for user purchases
kuzu_execute(con, "CREATE REL TABLE Buys(FROM User TO Product, purchase_date DATE)")3. Loading Data
You can load data into your Kuzu tables from R data frames or external files like CSV.
Loading from a Data Frame
Use kuzu_copy_from_df() to load data from an R
data.frame.
library(jsonlite)
# Create data frames for nodes and relationships
users <- data.frame(
userID = c("a1b2c3d4-e5f6-7890-1234-567890abcdef", "b2c3d4e5-f6a7-8901-2345-67890abcdef0"),
name = c("Alice", "Bob"),
age = c(35, 45),
is_active = c(TRUE, FALSE),
created_at = as.POSIXct(c("2023-01-15 10:30:00", "2022-11-20 14:00:00")),
last_login = as.Date(c("2023-10-25", "2023-09-30")),
stringsAsFactors = FALSE
)
# LIST types should be formatted as JSON strings
users$notes <- c(toJSON(c("note1", "note2")), toJSON("note3"))
products <- data.frame(
productID = c(101, 102),
name = c("Laptop", "Mouse")
)
buys <- data.frame(
from_user = c("a1b2c3d4-e5f6-7890-1234-567890abcdef", "b2c3d4e5-f6a7-8901-2345-67890abcdef0"),
to_product = c(101, 102),
purchase_date = as.Date(c("2023-02-20", "2023-03-15"))
)
# Load data into Kuzu
kuzu_copy_from_df(con, users, "User")
kuzu_copy_from_df(con, products, "Product")
kuzu_copy_from_df(con, buys, "Buys")Loading from a CSV File
Use kuzu_copy_from_csv() to load data from a CSV file.
For this to work, the file should be in the current working
directory.
# Create a CSV file in the project's root directory
csv_filename <- "products.csv"
write.csv(data.frame(productID = c(103, 104), name = c("Keyboard", "Monitor")),
csv_filename, row.names = FALSE)
# Load data from the CSV file using just the filename
kuzu_copy_from_csv(con, csv_filename, "Product")
# Clean up the created file
unlink(csv_filename)4. Executing Queries and Converting Results
You can execute Cypher queries using kuzu_execute() and
convert the results into various R formats.
# Execute a query to get users and their purchases
query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u.name, p.name, b.purchase_date")A Note on Query Results
The QueryResult object returned by
kuzu_execute() acts as an iterator over the results. This
means it can only be consumed once. Functions like
as.data.frame(), as_tibble(),
kuzu_get_all(), and the graph conversion functions will
exhaust this iterator.
Use Query Results returned as list
query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u.name, p.name, b.purchase_date")
result <- kuzu_get_all(query_result)
print(result)
# only fetch 1. result
query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u.name, p.name, b.purchase_date")
result <- kuzu_get_n(query_result, 1)
print(result)
#Fetch next result
result <- kuzu_get_next(query_result)
print(result)Convert to Graph Objects
For queries that return graph structures, you can convert the results
into graph objects from packages like igraph or
tidygraph. To do this, the query must return the node and
relationship variables themselves, not just their properties.
# Execute a query that returns a graph structure
graph_query_result <- kuzu_execute(con, "MATCH (u:User)-[b:Buys]->(p:Product) RETURN u, p, b")
igraph_obj <- as_igraph(graph_query_result)
print(igraph_obj)
plot(igraph_obj)
# Convert to a tidygraph object
tidygraph_obj <- as_tidygraph(graph_query_result)
print(tidygraph_obj)
plot(tidygraph_obj)